Quadratische Funktionen erforschen/Die Parameter der Scheitelpunktform und Potenzfunktionen - 4. Stufe: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Quadratische Funktionen erforschen(Unterschied zwischen Seiten)
K (- ZUM2Edutags)
Markierung: 2017-Quelltext-Bearbeitung
 
K (- ZUM2Edutags)
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Quadratische Funktionen erforschen}}}}
{{Navigation verstecken|{{Lernpfad Potenzfunktionen}}|Lernschritte einblenden|Lernschritte ausblenden}}
__NOTOC__


{{Box
== Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>&isin;</small> IN<sup>*</sup> ==
|
|In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
#herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,
#entdecken, welche Parameter es in der [[{{BASEPAGENAME}}/Die Scheitelpunktform|Scheitelpunktform]] quadratischer Funktionen gibt.


Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.
=== Vergleich mit Funktionen aus Stufe 3 ===
|Kurzinfo
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="xhhysjna" />
}}
 
 
== Quadratische Funktionen verändern ==
Wenn du dir die Bilder von der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen im Alltag|Quadratische Funktionen im Alltag]] noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x<sup>2</sup>) variiert und es entstehen die unterschiedlichsten Parabeln.
 
<gallery mode="packed-hover"><gallery mode="packed-hover">
Datei:Golden-gate-bridge-388917 640.jpg
Datei:Planten un Blomen.JPG
Datei:Turret-arch-1364314 1280.jpg
Datei:Elbphilharmonie Hamburg.JPG
</gallery>
 
 
 
Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.
 
 
{{Video}} [http://www.dlr.de/portaldata/1/resources//webcast/dlr_parabelfluege_320x240.mp4 Video: Parabelflug des DLR]
 
 
Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der {{pdf-extern|http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/publikationen/Broschuere_Parabelflug_lowres.pdf|Broschüre}} des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16&nbsp;(31) angucken.
 
 
== Strecken, Stauchen und Spiegeln==
 
{{Box
|Achtung
|Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel [[{{BASEPAGENAME}}/Die Parameter der Normalform|die Parameter der Normalform]]. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt [[#Verschiebung in x-Richtung|"Verschiebung in x-Richtung"]].
|Hervorhebung1
}}
 
 
{{Box
|1=Aufgabe 1
|2='''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=2x^2</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=\frac{1}{2}x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;und&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3) <math>y=-x^2</math> ?
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a \cdot x^2</math> verändert.
<ggb_applet width="100%" height="500" version="4.2" showMenuBar="true" showResetIcon="true" id="eK5MmMmb" />
 
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler'''.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter'''.
 
3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''"umgedreht"'''.}}|3=Arbeitsmethode}}
 
 
{{Box
|Aufgabe 2
|In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
 
{{LearningApp|app=pysv88tea18|height=400px}}
{{Lösung versteckt|Wenn a kleiner Null ist (<math>a<0</math>), dann ist die Parabel nach unten geöffnet.
 
Wenn a größer Null ist (<math>a>0</math>), dann ist die Parabel nach oben geöffnet.
 
Wenn a zwischen minus Eins und Eins liegt (<math>-1<a<1</math>), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.
 
Wenn a kleiner als minus Eins (<math>a<-1</math>) oder größer als Eins ist (<math>a>1</math>), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.}}|Arbeitsmethode
}}
 
 
{{Box
|Aufgabe 3
|'''Knobelaufgabe'''
 
Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.
{{LearningApp|app=pcssvbrfj16|height=500px}}
|Arbeitsmethode
}}
 
 
{{Box|1=Aufgabe 4|2='''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|3=Arbeitsmethode}}
{{Box
|Merke
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}
 
== Verschiebung in x-Richtung ==
 
{{Box
|Aufgabe 5
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 5) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1)  <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=(x+2)^2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>d=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=(x-d)^2</math> verändert.
 
<ggb_applet width="100%" height="478" version="4.2" showMenuBar="true" showResetIcon="true" id="grh32PSP" />
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach rechts verschoben'''.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach links verschoben'''.}}
|Arbeitsmethode
}}
 
{{Box
|Aufgabe 6
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Fabians Vermutung darüber, wie sich der Graph einer Funktion verändert, wenn man zu dem x‑Wert etwas addiert oder subtrahiert steht im Widerspruch zu seinen Beobachtungen in dem Applet. Merle versucht diesen vermeintlichen Widerspruch mit Hilfe einer Tabelle zu erklären.


'''a)''' Lies dir die Unterhaltung von Fabian und Merle durch und versuche die Begründung nachzuvollziehen.
{{Box|1=Aufgabe 1|2=
[[Datei:Verschiebung horizontal.JPG|rahmenlos|center|Gespräch horizontale Verschiebung|750px]]
Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
'''b)''' Erstelle geschickt ohne zu rechnen eine Tabelle für die Funktion <math>y=(x+3)^2</math>.
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
#* Definitionsbereich
#* Symmetrie
#* Monotonie
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>


{{Lösung versteckt|1=Die Tabelle für <math>y=(x+3)^2</math> sieht wie folgt aus:
{{Lösung versteckt|
 
: Die Definitionsbereiche der roten und blauen Funktionen sind für n>1 nicht-negativ. Im Definitionsbereich der blauen Funktionen muss ferner auch die 0 ausgeschlossen werden. Die verschiedenen blauen Graphen sind streng-monoton fallend. Rote und blaue Graphen haben alle den Punkt (1,1) gemeinsam (Begründung: 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}</math>). Der Wertebereich der blauen Graphen ist ]0,∞[.
{{{!}} class="wikitable"
{{!}}-
{{!}} '''x''' {{!}}{{!}} -6 {{!}}{{!}} -5 {{!}}{{!}} -4 {{!}}{{!}} -3 {{!}}{{!}} -2 {{!}}{{!}} -1 {{!}}{{!}} 0 {{!}}{{!}} 1 {{!}}{{!}} 2
{{!}}-
{{!}} '''y''' {{!}}{{!}} 9 {{!}}{{!}} 4 {{!}}{{!}} 1 {{!}}{{!}} 0 {{!}}{{!}} 1 {{!}}{{!}} 4 {{!}}{{!}} 9 {{!}}{{!}} 16 {{!}}{{!}} 25
{{!}}}
|2=Lösung anzeigen|3=Lösung verbergen}}
|Arbeitsmethode
}}
}}
|3=Arbeitsmethode}}


== Exponenten, Brüche und Potenzgesetze ==


{{Box|Aufgabe 7|'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
:''Für eine reelle Zahl a und eine natürliche Zahl n<math>\neq</math>0 wird definiert:''
:<math>a^{-n} := \textstyle \frac{1}{a^n}</math> für <math>a \neq 0.</math>


Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|Arbeitsmethode}}
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:


'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.
Auf unsere Situation angewandt ergibt sich:
:<font style="vertical-align:0%;"><math>x^{-\frac 1 n}</math></font><math>= \frac{1}{x^{\frac 1 n}}.</math>


'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.
{{Box|1=Aufgabe 2|2=
|Merksatz
Überprüfe die folgende Behauptung auf Richtigkeit und begründe Deine Entscheidung:<br>
}}
''Es sei n eine natürliche Zahl; dann hat die Funktion''
<math>f(x)=x^{-\frac{1}{n}}</math>
''den Definitonsbereich D = IR<sup>+</sup>.''
{{Lösung versteckt|
:Nach Stufe 3 dieses Kurses ist eine Wurzelfunktion <math>g(x)=\sqrt[n]{x}</math> für <math>n\geq2</math> nur auf IR<sup>+</sup><sub>o</sub> definiert, das heißt ihr Definitionsbereich <math>D = \mathbb{R}^+ \cup \{0\}.</math><br />
:Aufgrund des Zusammenhangs <math>f(x) = x^{-\frac 1 n}= \textstyle \frac{1}{x^{\frac 1 n}} = \textstyle \frac{1}{\sqrt[n]{x}} = \textstyle \frac{1}{g(x)}</math> überträgt sich der Definitionsbereich der Funktion ''g'' grundsätzlich auf die Funktion ''f''. Einschränken muss man den Definitionsbereich von ''f'' allerdings noch um jene Werte, bei denen g(x)<math>=</math>0 gilt, also um x<math>=</math>0. Damit ergibt sich für den Definitionsbereich der Funktion ''f'': D<math>=</math>IR<sup>+</sup>.}}
|3=Arbeitsmethode}}


== Verschiebung in y-Richtung ==
{{Box
|Aufgabe 8
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
== Potenzfunktionen und ihre Umkehrfunktionen ==
::(1) <math>y=x^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=x^2-3</math> ?
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).


'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
<big>'''Beispiel I:'''</big>
Es sei g eine Potenzfunktion, definiert auf D = IR<sup>+</sup><sub>0</sub> durch <math>g(x)=x^{\frac{1}{3}}</math>. Gesucht ist die Umkehrfunktion <math>g^{\,-1}=:f</math> von <math>\!\,g</math>.  


<math>g^{\,-1}</math> ergibt sich aus <math>\!\,g</math> durch Auflösen nach <math>\!\,x</math>. Es ist:<br />


In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>e=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=x^2+e</math> verändert. 
<math>\begin{array}{lcr} x^{\frac{1}{3}} & = & g(x) = y \\  x^{\frac{3}{3}} & = & y^3 \\ x & = & y^3 \end{array}</math>


<ggb_applet id="HcpKPj4G" width="677" height="550" border="888888" />
Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)<math>=</math>x<sup>3</sup>.
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:


1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach oben verschoben'''.
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="uxgafbxh" />
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach unten verschoben'''.}}
|Arbeitsmethode
}}


<big>'''Beispiel II:'''</big>
Es sei f eine Potenzfunktion, nun definiert durch <math>f(x)=x^{- \frac 1 3}</math> mit dem Definitionsbereich D = IR<sup>+</sup>. Gesucht ist wieder ihre Umkehrfunktion f<sup>-1</sup>.


{{Box
Auflösen nach x ergibt:<br />
|Aufgabe 9
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 7-8) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


<math>\begin{array}{lcr} y & =  & x^{-\frac{1}{3}} \\  y^3 & = & x^{- \frac{3}{3}} \\ & = & x^{-1} \\  y^3 & = & \frac{1}{x} \\ x \cdot y^3 & = & 1 \\
x & = & \frac{1}{y^3}\\ & = & y^{-3} \end{array}</math>


Graphen zeichnen einmal „verkehrt herum”: Bei dieser Aufgabe sind die Funktionsgraphen und Terme bereits gezeichnet bzw. angegeben. Was fehlt, sind die passenden Koordinatensysteme.


'''a)''' Zeichne in deinem Hefter die passenden Koordinatensysteme für '''drei''' der quadratischen Funktionen:
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="sukyfev6" />


[[Datei:Koordinatensystem finden.PNG|rahmenlos|850px|Funktionen für Aufgabe]]


{{Lösung versteckt|[[Datei:Koordinatensystem finden Lösungsteil 1.PNG|rahmenlos|800px|Lösungsteil 1]][[Datei:Koordinatensystem finden Lösungsteil 2.PNG|rahmenlos|800px|Lösungsteil 2]][[Datei:Koordinatensystem finden Lösungsteil 3.PNG|rahmenlos|800px|Lösungsteil 3]]}}
''Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f<sup>-1</sup> und f(x)<math>=</math>x<sup>-1</sup>!''


'''b)''' Wenn du das Koordinatensystem für die Funktion <math>(1)  y=0,5\cdot x^2+2</math> gezeichnet hast, wie kommst du dann ganz einfach auf das Koordinatensystem der Funktion <math>(4)  y=0,5\cdot x^2+5</math>? Formuliere einen Tipp.
=== Vergleich mit Potenzfunktionen der Stufe 1 ===


{{Lösung versteckt|Das Koordinatensystem von (4) ist um genau drei Einheiten nach unten verschoben.}}
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. [[Potenzfunktionen_-_1._Stufe |Hier kannst Du direkt zur Stufe 1 springen]].
|Arbeitsmethode
}}


{{Box
|Aufgabe 10
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 8)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


Lucio hat noch ein Problem bei der Unterscheidung von Termen in der Form <math>f(x)=x^2+9</math> und <math>f(x)=(x+3)^2</math>. Lies dir die folgende Unterhaltung durch. Führe sie anschließend in deinem Hefter fort, indem du dir eine Antwort auf Lucios Problem überlegst.
{{Box|1=Aufgabe 3|2=
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?<br />
Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br />
{{Lösung versteckt| Potenzfunktionen mit <math>f(x) = x^{\frac 1 n}</math> mit <math>n\geq2</math> sind auf ihrem Definitionsbereich <math>\mathbb{D}=\mathbb{R}^+_0</math> streng monoton steigend. Deswegen gibt es auf diesem Bereich eine Umkehrfunktion und zwar von der Bauart f(x)<math>=</math>x<sup>n</sup>.<br />Ähnliches gilt für Funktionen der Form <math>f(x) = x^{-{\frac 1 n}}</math> mit <math>n\geq2</math> auf dem Definitionsbereich <math>\mathbb{D}=\mathbb{R}^+</math>. Hier lautet die Umkehrfunktion f(x)<math>=</math>x<sup>-n</sup>.<br /> Hat man aber eine Potenzfunktion f(x)<math>=</math>x<sup>n</sup> mit <math>n\geq2</math> (also eine aus der Stufe 1 dieses Lernpfades) vorgegeben, so ist sie - für gerade n - auf ihrem Defintionsbereich <math>\mathbb{D}=\mathbb{R}</math> nicht überall streng monoton. Die Umkehrbarkeit ist aber nur auf streng monotonen Intervallen möglich. Betrachtet man f auf dem eingeschränkten Definitionsbereich <math>\mathbb{R}^+_0</math>, so ist sie dort streng monoton und damit umkehrbar. Die Umkehrfunktion ist dort <math>f(x) = x^{\frac 1 n}</math>. }}
|3=Arbeitsmethode}}
<br />


[[Datei:Lucio, Fabian Binomische Formel.png|rahmenlos|center|Unterhaltung zu typischem Fehler|600px]]
=== Zusammenfassung ===


{{Lösung versteckt
Die Umkehrfunktionen von Potenzfunktionen der Form <font style="vertical-align:15%;"><math>f(x) = x^{\frac 1 n},</math> mit n &isin; IN<sup>*</sup> und <math>n\geq2</math></font> sind Potenzfunktionen der Form <math>f(x)\!\, = x^n.</math> Sie sind definiert auf dem Definitionsbereich D = IR<sup>+</sup><sub>0</sub>.<br />
|<math>f(x)=(x+3)^2=(x+3)(x+3)=x^2+3x+3x+9=x^2+6x+9</math> (1. Binomische Formel)}}
|Arbeitsmethode
}}


Die Umkehrfunktionen von Potenzfunktionen der Form <font style="vertical-align:15%;"><math>f(x) = x^{- \frac 1 n},</math> mit n &isin; IN<sup>*</sup> und <math>n\geq2</math></font> sind Potenzfunktionen der Form <math>f(x) = x^{-n}=\textstyle \frac{1}{x^n}</math>. Sie sind definiert auf dem Definitionsbereich D = IR<sup>+</sup>.


{{Box|Aufgabe 11|'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|Arbeitsmethode}}
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:


'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
== *Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip ==
<small>(* Bearbeitung freiwillig, Ergänzung)</small>


'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.
|Merksatz
}}


== Zusammenfassung der wichtigsten Inhalte ==
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="ju6exjps" />


{{Box
{{Box|1=Aufgabe 4|2=
|
Schau Dir dieses [https://www.oberprima.com/index.php/parameter-in-potenzfunktionen/nachhilfe Video (Link hier)] auf www.oberprima.com an. Dort lernst Du die Merkregel des "5 S"-Prinzips kennen; die "5 S" lauten:
|Hier sind die Merksätze, die dir auf dieser Seite begegnet sind, noch einmal gesammelt dargestellt.
* '''S'''piegeln
|Kurzinfo
* '''S'''trecken
}}
* '''S'''tauchen
* '''S'''chieben
* '''S'''uperponieren
Beantworte nun die folgenden Fragen:
# Wie findest Du das Video? Was macht der Vortragende gut, welche Fehler macht er?
# Welche der genannten Veränderungen kannst Du mit dem Applet erzielen? Welche der Parameter sind für welche Veränderung verantwortlich?
# Wo gehen die Variationsmöglichkeiten des Applets über die im Video vorgestellten hinaus?
|3=Arbeitsmethode}}


== *Zum Weiterdenken: Mit Funktionen malen ==
<small>(freiwillig)</small>


{{Box|Merke
{{Box|1=Aufgabe 5|2=  
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:


'''a > 0''': Die Parabel ist nach oben geöffnet.
[[Bild:rosette_1.png|thumb|right|250px|Das erste Blatt setzt sich aus drei Potenzfuntktionen zusammen, die nur auf bestimmten Intervallen definiert sind.]]
[[Bild:rosette_2.png|thumb|right|250px|Wie müssen die Parameter verändert werden, wenn sie das Blatt links unten bilden sollen? ]]
[[Bild:rosette_3.png|thumb|right|250px| Wie kann man die Größe der Blätter beeinflussen?]]


'''a < 0''': Die Parabel ist nach unten geöffnet.
<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true" id="tbeueb9m" /><br /><br />
Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form


'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
:<math>f(x)=a\cdot x^q</math>  


'''-1 < a < 1''': Die Parabel ist gestaucht.
mit <math>a \in \mathbb{R}, q \in \mathbb{N} \cup \{ \textstyle{\pm\frac{1}{2},\pm\frac{1}{3},\pm\frac{1}{4},\pm\frac{1}{5},\pm\frac{1}{6},\ldots } \}</math> zusammengesetzt.


Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}


 
Bearbeite zu dem Bild die folgenden Fragen:
{{Box
# Auf welchen Intervallen sind die Funktionen jeweils definiert?
|Merke
# Das "Blatt" rechts oben im Bild ist aus drei verschiedenen Potenzfunktionen aufgebaut.<br />Untersuche, wie die Parameter a und q die Graphen beeinflussen und welche Werte für a und q hier verwendet sind.
|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:
# Von welcher Form sind die Funktionen, die das Blatt links unten ausbilden?
 
# Wie kann man die Größe der Blätter beeinflussen?
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.
# Auf welchen Abschnitten sind die Funktionen definiert?
 
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.
|Merksatz
}}
 
 
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:
 
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
 
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.
|Merksatz
}}




[[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|150px]]
|3=Arbeitsmethode}}


Die auf dieser Seite gewonnen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische Funktion der Form <math>y=a(x-d)^2+e</math>. Diese Form heißt '''Scheitelpunktform''', da die Parameter d und e die Koordinaten des Scheitelpunktes <math>S(d|e)</math> der Parabel angeben.


Auf der [[{{BASEPAGENAME}}/Die Scheitelpunktform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[{{BASEPAGENAME}}/Übungen|Übungen]].
----


{{Fortsetzung|weiter=Die Scheitelpunktform|weiterlink=Quadratische Funktionen erforschen/Die Scheitelpunktform}}
'''Und nun geht's zum Abschlusstest'''


Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]])
{{Fortsetzung|weiter=Weiter|weiterlink=Potenzfunktionen_-_Test}}


[[Kategorie:Mathematik]]
[[Kategorie:Mathematik]]
[[Kategorie:Quadratische Funktion]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:LearningApps]]
[[Kategorie:GeoGebra]]
[[Kategorie:GeoGebra]]

Version vom 17. Dezember 2021, 11:17 Uhr


Die Graphen der Funktionen mit f(x) = x-1/n, n IN*

Vergleich mit Funktionen aus Stufe 3

GeoGebra


Aufgabe 1

Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.

  1. Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
    • Definitionsbereich
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
Die Definitionsbereiche der roten und blauen Funktionen sind für n>1 nicht-negativ. Im Definitionsbereich der blauen Funktionen muss ferner auch die 0 ausgeschlossen werden. Die verschiedenen blauen Graphen sind streng-monoton fallend. Rote und blaue Graphen haben alle den Punkt (1,1) gemeinsam (Begründung: 1r 1 für alle ). Der Wertebereich der blauen Graphen ist ]0,∞[.

Exponenten, Brüche und Potenzgesetze

Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:

Für eine reelle Zahl a und eine natürliche Zahl n0 wird definiert:
für


Auf unsere Situation angewandt ergibt sich:


Aufgabe 2

Überprüfe die folgende Behauptung auf Richtigkeit und begründe Deine Entscheidung:
Es sei n eine natürliche Zahl; dann hat die Funktion den Definitonsbereich D = IR+.

Nach Stufe 3 dieses Kurses ist eine Wurzelfunktion für nur auf IR+o definiert, das heißt ihr Definitionsbereich
Aufgrund des Zusammenhangs überträgt sich der Definitionsbereich der Funktion g grundsätzlich auf die Funktion f. Einschränken muss man den Definitionsbereich von f allerdings noch um jene Werte, bei denen g(x)0 gilt, also um x0. Damit ergibt sich für den Definitionsbereich der Funktion f: DIR+.


Potenzfunktionen und ihre Umkehrfunktionen

Beispiel I: Es sei g eine Potenzfunktion, definiert auf D = IR+0 durch . Gesucht ist die Umkehrfunktion von .

ergibt sich aus durch Auflösen nach . Es ist:

Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)x3.

GeoGebra

Beispiel II: Es sei f eine Potenzfunktion, nun definiert durch mit dem Definitionsbereich D = IR+. Gesucht ist wieder ihre Umkehrfunktion f-1.

Auflösen nach x ergibt:


GeoGebra


Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f-1 und f(x)x-1!

Vergleich mit Potenzfunktionen der Stufe 1

Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.


Aufgabe 3

Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?
Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!

Potenzfunktionen mit mit sind auf ihrem Definitionsbereich streng monoton steigend. Deswegen gibt es auf diesem Bereich eine Umkehrfunktion und zwar von der Bauart f(x)xn.
Ähnliches gilt für Funktionen der Form mit auf dem Definitionsbereich . Hier lautet die Umkehrfunktion f(x)x-n.
Hat man aber eine Potenzfunktion f(x)xn mit (also eine aus der Stufe 1 dieses Lernpfades) vorgegeben, so ist sie - für gerade n - auf ihrem Defintionsbereich nicht überall streng monoton. Die Umkehrbarkeit ist aber nur auf streng monotonen Intervallen möglich. Betrachtet man f auf dem eingeschränkten Definitionsbereich , so ist sie dort streng monoton und damit umkehrbar. Die Umkehrfunktion ist dort .


Zusammenfassung

Die Umkehrfunktionen von Potenzfunktionen der Form mit n ∈ IN* und sind Potenzfunktionen der Form Sie sind definiert auf dem Definitionsbereich D = IR+0.

Die Umkehrfunktionen von Potenzfunktionen der Form mit n ∈ IN* und sind Potenzfunktionen der Form . Sie sind definiert auf dem Definitionsbereich D = IR+.


*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip

(* Bearbeitung freiwillig, Ergänzung)


GeoGebra


Aufgabe 4

Schau Dir dieses Video (Link hier) auf www.oberprima.com an. Dort lernst Du die Merkregel des "5 S"-Prinzips kennen; die "5 S" lauten:

  • Spiegeln
  • Strecken
  • Stauchen
  • Schieben
  • Superponieren

Beantworte nun die folgenden Fragen:

  1. Wie findest Du das Video? Was macht der Vortragende gut, welche Fehler macht er?
  2. Welche der genannten Veränderungen kannst Du mit dem Applet erzielen? Welche der Parameter sind für welche Veränderung verantwortlich?
  3. Wo gehen die Variationsmöglichkeiten des Applets über die im Video vorgestellten hinaus?

*Zum Weiterdenken: Mit Funktionen malen

(freiwillig)


Aufgabe 5
Das erste Blatt setzt sich aus drei Potenzfuntktionen zusammen, die nur auf bestimmten Intervallen definiert sind.
Wie müssen die Parameter verändert werden, wenn sie das Blatt links unten bilden sollen?
Wie kann man die Größe der Blätter beeinflussen?
GeoGebra


Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form

mit zusammengesetzt.


Bearbeite zu dem Bild die folgenden Fragen:

  1. Auf welchen Intervallen sind die Funktionen jeweils definiert?
  2. Das "Blatt" rechts oben im Bild ist aus drei verschiedenen Potenzfunktionen aufgebaut.
    Untersuche, wie die Parameter a und q die Graphen beeinflussen und welche Werte für a und q hier verwendet sind.
  3. Von welcher Form sind die Funktionen, die das Blatt links unten ausbilden?
  4. Wie kann man die Größe der Blätter beeinflussen?
  5. Auf welchen Abschnitten sind die Funktionen definiert?



Und nun geht's zum Abschlusstest