Adverbs/Adverb or Adjective? und Quadratische Funktionen erkunden/Die Parameter der Scheitelpunktform: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Adverbs(Unterschied zwischen Seiten)
(+Bsp)
Markierung: 2017-Quelltext-Bearbeitung
 
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
Im Englischen muss genau unterschieden werden, ob sich ein Attribut als Adjektiv auf das Nomen oder als Adverb auf das Verb oder ein Adjektiv bezieht.
{{Navigation verstecken|{{Quadratische Funktionen erkunden}}}}


{{Box
|
|In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
#herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,
#entdecken, welche Parameter es in der [[{{BASEPAGENAME}}/Die Scheitelpunktform|Scheitelpunktform]] quadratischer Funktionen gibt.


{{Fortsetzung|
Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.
weiter=Adverb or Adjective?<br>(be, feel, look, smell)|weiterlink=Englisch/Grammatik/Adverb or Adjective - be, feel, look|
|Kurzinfo
übersicht=Adverbs and Adjectives<br>(Übersicht)|übersichtlink=Englisch/Grammatik/Adverbs#Siehe_auch|
}}
vorher=Adverbs of Manner"|vorherlink=Englisch/Grammatik/Adverbs}}
 
 
== Quadratische Funktionen verändern ==
Wenn du dir die Bilder von der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen im Alltag|Quadratische Funktionen im Alltag]] noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x<sup>2</sup>) variiert und es entstehen die unterschiedlichsten Parabeln.
 
<gallery mode="packed-hover"><gallery mode="packed-hover">
Datei:Golden-gate-bridge-388917 640.jpg
Datei:Planten un Blomen.JPG
Datei:Turret-arch-1364314 1280.jpg
Datei:Elbphilharmonie Hamburg.JPG
</gallery>
 
 
 
Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.
 
 
{{Video}} [http://www.dlr.de/portaldata/1/resources//webcast/dlr_parabelfluege_320x240.mp4 Video: Parabelflug des DLR]
 
 
Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der {{pdf-extern|http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/publikationen/Broschuere_Parabelflug_lowres.pdf|Broschüre}} des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16&nbsp;(31) angucken.
 
 
== Strecken, Stauchen und Spiegeln==
 
{{Box
|Achtung
|Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel [[{{BASEPAGENAME}}/Die Parameter der Normalform|die Parameter der Normalform]]. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt [[#Verschiebung in x-Richtung|Verschiebung in x-Richtung]].
|Hervorhebung1
}}
 
 
{{Box
|1=Aufgabe 1
|2='''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=2x^2</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=\frac{1}{2}x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;und&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3) <math>y=-x^2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).
{{Lösung versteckt|1=Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.|2=Hilfe anzeigen|3=Hilfe verbergen}}
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a \cdot x^2</math> verändert.
<ggb_applet width="100%" height="500" version="4.2" showMenuBar="true" showResetIcon="true" id="eK5MmMmb" />
 
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor 2 immer verdoppelt werden. Der zugehörige y-Wert wird dadurch größer.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor 1/2 immer halbiert werden. Der zugehörige y-Wert wird dadurch kleiner.
 
3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''"umgedreht"''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor -1 immer negative Werte annehmen. Der y-Wert ist also immer negativ.}}|3=Arbeitsmethode}}
 
 
{{Box
|Aufgabe 2
|In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
 
{{LearningApp|app=pysv88tea18|height=400px}}
{{Lösung versteckt|1=Schau nochmal in deine Lösung zu Aufgabe 1. Du kannst auch erneut verschiedene Werte für a in dem Applet dort eingeben und die Auswirkungen auf den Graphen betrachten.|2=Hilfe anzeigen|3=Hilfe verbergen}}
 
{{Lösung versteckt|Wenn a kleiner Null ist (<math>a<0</math>), dann ist die Parabel nach unten geöffnet.
 
Wenn a größer Null ist (<math>a>0</math>), dann ist die Parabel nach oben geöffnet.
 
Wenn a zwischen minus Eins und Eins liegt (<math>-1<a<1</math>), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.
 
Wenn a kleiner als minus Eins (<math>a<-1</math>) oder größer als Eins ist (<math>a>1</math>), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.}}|Arbeitsmethode
}}
 
 
{{Box
|Aufgabe 3
|'''Knobelaufgabe'''
 
Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.
{{LearningApp|app=pcssvbrfj16|height=500px}}
|Arbeitsmethode
}}
 
 
{{Box|1=Aufgabe 4|2='''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|3=Arbeitsmethode}}
{{Box
|Merke
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}
 
== Verschiebung in x-Richtung ==
 
{{Box
|Aufgabe 5
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 5) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1)  <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=(x+2)^2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
{{Lösung versteckt|1=Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die zwei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.|2=Hilfe anzeigen|3=Hilfe verbergen}}
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>d=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=(x-d)^2</math> verändert.
 
<ggb_applet width="100%" height="478" version="4.2" showMenuBar="true" showResetIcon="true" id="grh32PSP" />
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach rechts verschoben''', da die x-Werte ''vor dem quadrieren'' mit 2 subtrahiert werden (<math>(x-2)^2</math>). Der Scheitelpunkt liegt nicht mehr bei <math>S_1(0|0)</math>, sondern weiter rechts im Punkt <math>S_2(2|0)</math>.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach links verschoben''', da die x-Werte ''vor dem quadrieren'' mit 2 addiert werden (<math>(x+2)^2</math>). Der Scheitelpunkt liegt nicht mehr bei <math>S_1(0|0)</math>, sondern weiter links im Punkt <math>S_2(-2|0)</math>.}}
|Arbeitsmethode
}}


'''Remember'''
{{Box
|Aufgabe 6
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


''Sebastian Vettel is a <span style="display: inline-block;background:tomato;padding:0.2em 0.5em;border-radius:0.2em;text-align: center;width: 5em;">careful</span> &nbsp; <span style="display: inline-block;background:lightsalmon;padding:0.2em 0.5em;border-radius:0.2em;text-align: center;width: 5em;">driver</span> who always <span style="display: inline-block;background:lightyellow;padding:0.2em 0.5em;border-radius:0.2em;text-align: center;width: 5em;"> drives</span> &nbsp; <span style="display: inline-block;background:yellow;padding:0.2em 0.5em;border-radius:0.2em;text-align: center;width: 5em;">carefully</span>.''
Fabians Vermutung darüber, wie sich der Graph einer Funktion verändert, wenn man zu dem x‑Wert etwas addiert oder subtrahiert steht im Widerspruch zu seinen Beobachtungen in dem Applet. Merle versucht diesen vermeintlichen Widerspruch mit Hilfe einer Tabelle zu erklären.


'''Adverbien''' beschreiben Adjektive, Verben, Adverben.  
'''a)''' Lies dir die Unterhaltung von Fabian und Merle durch und versuche die Begründung nachzuvollziehen.
[[Datei:Verschiebung horizontal.JPG|rahmenlos|center|Gespräch horizontale Verschiebung|750px]]
'''b)''' Erstelle geschickt ohne zu rechnen eine Tabelle für die Funktion <math>y=(x+3)^2</math>.
{{Lösung versteckt|1='''1.''' Zeichne eine Tabelle wie sie in Aufgabenteil a) dargestellt ist in deinen Hefter.


Adverbien der '''Art und Weise''' ('''''adverbs of manner''''') ...
'''2.''' Füge zunächst nur die x-Werte hinzu, für die du die Tabelle erstellen möchtest - zum Beispiel von -6 bis 2.
* stehen nach dem Verb (drive ''slowly'', watch ''carefully'')
* stehen vor einem Adjektiv (''extremely'' difficult, ''completely'' safe)


'''3.''' Wie ist der Term <math>y=(x+3)^2</math> im Vergleich zu <math>y=x^2</math> verschoben? Schau dir an, mit welchem Trick Merle und Fabian die Tabelle in Aufgabenteil a) erstellt haben.|2=Hilfe anzeigen|3=Hilfe verbergen}}


'''Adjektive'''
{{Lösung versteckt|1=Die Tabelle für <math>y=(x+3)^2</math> sieht wie folgt aus:
* beschreiben ein Nomen
* stehen vor Nomen
* stehen nach Artikeln (the, a - an, this, that)  


== Interaktive Übungen ==
{{{!}} class="wikitable"
=== make adverbs ===
{{!}}-
Make adverbs from the adjectives in ( ) and complete the sentences.
{{!}} '''x''' {{!}}{{!}} -6 {{!}}{{!}} -5 {{!}}{{!}} -4 {{!}}{{!}} -3 {{!}}{{!}} -2 {{!}}{{!}} -1 {{!}}{{!}} 0 {{!}}{{!}} 1 {{!}}{{!}} 2
<div class="lueckentext-quiz" lang="en">
{{!}}-
Last week Robert's football team, Wimbledon Youth Club, won their match <em>easily (easy)</em>.
{{!}} '''y''' {{!}}{{!}} 9 {{!}}{{!}} 4 {{!}}{{!}} 1 {{!}}{{!}} 0 {{!}}{{!}} 1 {{!}}{{!}} 4 {{!}}{{!}} 9 {{!}}{{!}} 16 {{!}}{{!}} 25
{{!}}}
|2=Lösung anzeigen|3=Lösung verbergen}}
|Arbeitsmethode
}}


They usually play very <em>confidently (confident)</em> and win most of their matches.


But yesterday things did not go so <em>well(good)</em>.
{{Box|Aufgabe 7|'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


They did not play <em>carefully (careful)</em> enough, and so they lost against Bromwich Sports Club.
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|Arbeitsmethode}}
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:


The Bromwich team played very <em>cleverly(clever)</em>, sometimes <em>faster (fast)</em> and sometimes <em>more slowly (slow)</em> than Wimbledon.  
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.


After a short time the boys in Robert's team ran round the field <em>nervously (nervous)</em> and started to play <em> badly(bad)</em>.
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.
|Merksatz
}}


Robert had a very bad day - he played <em> terribly (terrible)</em>. Soon it was 3-1 for Bromwich. The Wimbledon boys tried very <em>hard (hard)</em>, but the Bromwich team played too <em>strongly(strong)</em> for them. Bromwich won the match 3-2.
== Verschiebung in y-Richtung ==
</div>
{{Box
|Aufgabe 8
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


=== good or well? ===
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
'''''Good''''' is an adjective. The [[Englisch/Grammatik/Adverbs|adverb]] for good is '''''well''''':
::(1) <math>y=x^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=x^2-3</math> ?
* Your English is good.  &nbsp; &nbsp; but  &nbsp; &nbsp; You speak English well.
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
* Susan is a good pianist.  &nbsp; &nbsp; but  &nbsp; &nbsp; Susan plays the piano well.
{{Lösung versteckt|1=Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die beiden Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.|2=Hilfe anzeigen|3=Hilfe verbergen}}
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?




Put in good or well:
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>e=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=x^2+e</math> verändert.
<div class="lueckentext-quiz" lang="en">
1. I play tennis but I'm not very <em>good</em> at it.


2. Your exam results were very<em>good</em>.
<ggb_applet id="HcpKPj4G" width="677" height="550" border="888888" />
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:


3. You did very <em>well</em> in your exams.
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach oben verschoben''', da die x-Werte ''nach dem quadrieren'' mit 3 addiert werden.


4. The weather was very <em>good</em> while we were on holiday.
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach unten verschoben''', da die x-Werte ''nach dem quadrieren'' mit 3 subtrahiert werden.}}
|Arbeitsmethode
}}


5. I didn't sleep very <em>well</em> last night.
{{Box
|Aufgabe 9
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 7-8) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


6. "I hope you are <em>well</em>!"
Graphen zeichnen einmal „verkehrt herum”: Bei dieser Aufgabe sind die Funktionsgraphen und Terme bereits gezeichnet bzw. angegeben. Was fehlt, sind die passenden Koordinatensysteme.
</div>


Put in good or well:
'''a)''' Zeichne in deinem Hefter die passenden Koordinatensysteme für '''drei''' der quadratischen Funktionen:
<div class="lueckentext-quiz" lang="en">
1. How are you? Are you <em>well (???)</em>?


2. David speaks German very <em> well (???)</em>.
[[Datei:Koordinatensystem finden.PNG|rahmenlos|850px|Funktionen für Aufgabe]]


3. David's German is very <em> good (???)</em>.
{{Lösung versteckt|1=Der Parameter d kommt bei keiner der Parabeln vor, das heißt der Graph ist weder nach rechts noch nach links verschoben.


4. Our new business is going very <em> well (???)</em> at the moment.
Der Parameter a sorgt für eine Stauchung oder Streckung der Parabel. Der Parameter e verschiebt die Parabel in y-Richtung, also entlang der y-Achse nach oben oder unten.


5. I like your jacket. It looks <em> good (good)</em> on you.
Nutze für die Abstände auf der x- und y-Achse jeweils 1 Kästchen und gehe in Einserschritten voran.|2=Hilfe anzeigen|3=Hilfe verbergen}}


6. I've met her a few times but I don't know her very <em> well (???)</em>.
{{Lösung versteckt|Die Koordinatensysteme zu den Parabeln und Funktionstermen sollten wie folgt liegen:
</div>
[[Datei:Koordinatensystem finden Lösungsteil 1.PNG|rahmenlos|800px|Lösungsteil 1]][[Datei:Koordinatensystem finden Lösungsteil 2.PNG|rahmenlos|800px|Lösungsteil 2]][[Datei:Koordinatensystem finden Lösungsteil 3.PNG|rahmenlos|800px|Lösungsteil 3]]


=== mixed exercises ===
Für die Lage der Achsen ist wichtig, dass für alle Funktionen hier gilt: <math>d=0</math>.
1. Put in the right form - adjective or adverb.
<div class="lueckentext-quiz" lang="en">
1. Becky likes <em>loud (loud)</em> music. Sometimes she plays her guitar <em>loudly (loud)</em>.


2. Then her mother is <em>angry (angry)</em>. And she shouts <em>angrily (angry)</em>:
Daraus folgt, dass der Scheitelpunkt jeder Parabel hier '''auf der y-Achse''' liegt. Seine Koordinaten sind also jeweils <math>S(0|e)</math>.


3. "Can't you play that thing <em>quietly (quiet)</em>? It's never <em> quiet (quiet)</em> in this house!"
Die x-Achse liegt '''e Einheiten von dem Scheitelpunkt entfernt'''. Je nach Vorzeichen von e über oder unter dem Scheitelpunkt.
</div>
<div class="lueckentext-quiz" lang="en">
4. Sarah can paint <em>beautifully (beautiful)</em>. Her father has put her most <em> beautiful (beautiful)</em> pictures on the wall in the living-room.


5. He isn't usually a <em>fast (fast)</em> worker, but sometimes he does his homework very <em>quickly (quick)</em>.
Der Maßstab der Achsen muss so gewählt sein, dass jedes Kästchen für eine Einheit steht. Sonst passen die Werte der anderen Punkte der Parabeln nicht zu der Funktionsgleichung.}}


6. Then he answers questions<em>stupidly (stupid)</em>, or makes <em>stupid (stupid)</em> mistakes.
'''b)''' Wenn du das Koordinatensystem für die Funktion <math>(1) y=0,5\cdot x^2+2</math> gezeichnet hast, wie kommst du dann ganz einfach auf das Koordinatensystem der Funktion <math>(4) y=0,5\cdot x^2+5</math>? Formuliere einen Tipp.
</div>
<div class="lueckentext-quiz" lang="en">
7. When he does his homework <em>badly(bad)</em>, he gets a <em>bad (bad)</em> mark, of course.


8. He wasn't really <em> happy (happy)</em> at his old school, but he goes to school<em> happily (happy)</em> in Birmingham.
{{Lösung versteckt|Ein Tipp könnte wie folgt lauten:
</div>
[[Datei:Beispiel-Tipp Koordinatensystem finden.png|rahmenlos|600px|Beispiel Tipp]]}}
|Arbeitsmethode
}}


2. Adjective or adverb?
{{Box
<div class="lueckentext-quiz" lang="en">
|Aufgabe 10
Basketball is very <em> popular (popular)</em> at this school. Do you think I can play in your team?
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 8)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


-  Can you run <em> fast(fast)</em>? Can you jump <em>well(good)</em>?
Lucio hat noch ein Problem bei der Unterscheidung von Termen in der Form <math>f(x)=x^2+9</math> und <math>f(x)=(x+3)^2</math>. Lies dir die folgende Unterhaltung durch. Führe sie anschließend in deinem Hefter fort, indem du dir eine Antwort auf Lucios Problem überlegst.


And can you move <em>quickly (quick)</em>? Then you're all right.
[[Datei:Lucio, Fabian Binomische Formel.png|rahmenlos|center|Unterhaltung zu typischem Fehler|600px]]


Do you practise <em>regularly (regular)</em>?
{{Lösung versteckt
</div>
|1=Schaue dir noch einmal die [https://de.serlo.org/mathe/terme-gleichungen/terme-variablen/binomische-formeln/binomische-formeln Binomischen Formeln] an.|2=Hilfe anzeigen|3=Hilfe verbergen}}


3. Adjective or adverb?
{{Lösung versteckt|Die Terme <math>f(x)=(x+3)^2</math> und <math>f(x)=x^2+9</math> sind nicht gleich.
<div class="lueckentext-quiz" lang="en">
The school volleyball team played <em> well (good) </em>on Saturday.


Oh, did they win? Their last match was <em> terrible(terrible)</em>.
Man darf das Quadrat nicht einfach in die Klammer von <math>f(x)=(x+3)^2</math> ziehen: <math>f(x)=(x+3)^2\neq x^2+3^2</math>


Chelsea were so <em> bad(bad)</em> last week that the lost against ManU. But yesterday they beat Everton <em>easily(easy)</em>.
Die erste Binomische Formel besagt vielmehr:


Everton often play <em>badly(bad)</em> against weaker teams.
<math>f(x)=(x+3)^2=(x+3)(x+3)=x^2+3x+3x+9=x^2+6x+9</math>.}}
|Arbeitsmethode
}}


Did you hear about the cycling race on TV? Lewis Armstrong was <em> fantastic(fantastic)</em>. We only watched the first part. But that was very <em>exciting (exciting)</em>.
{{Box|Aufgabe 11|'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
</div>
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|Arbeitsmethode}}
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:


=== more exercises ===
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
4. Fill in the adjective or the correct form of the adverb.
<div class="lueckentext-quiz" lang="en">
1. Please, do your homework <em>carefully (careful)</em>.


2. Tom has got an <em>excellent (excellent)</em> voice. He sings <em>excellently (excellent)</em>.
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.
|Merksatz
}}


3. Today`s weather is really <em>awful (awful)</em>.
== Zusammenfassung der wichtigsten Inhalte ==


4. Is this chair <em>comfortable (comfortable) </em> enough? - Yes, I sit very <em>comfortably (comfortable)</em> .
{{Box
|
|Hier sind die Merksätze, die dir auf dieser Seite begegnet sind, noch einmal gesammelt dargestellt.
|Kurzinfo
}}


5. Tom plays <em>endlessly (endless)</em>  with his computer.


6. The sun was shining <em> brightly (bright) </em> and everybody was <em>happy (happy) </em>.
{{Box
</div>
|Merke
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:


 
'''a > 0''': Die Parabel ist nach oben geöffnet.
5. Fill in the adjective or the correct form of the adverb.
<div class="lueckentext-quiz" lang="en">
1. Please, talk <em>quietly (quiet)</em>. Don`t be so <em>loud (loud)</em>.


2. This was really a <em>dangerous (dangerous) </em> situation.
'''a < 0''': Die Parabel ist nach unten geöffnet.


3. We won`t be <em>late (late)</em>; we will arrive <em>punctually (punctual)</em>.
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.


4. "I`ve got a good mark", Susan shouted <em>excitedly (excited)</em>.
'''-1 < a < 1''': Die Parabel ist gestaucht.


5. The policeman was very <em>polite (polite)</em>.
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}


6. He is a very <em>careful (careful) </em> driver.


7. The teacher dictated <em> slowly (slow)</em> and we could <em>easily (easy) </em>follow.
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:


8. The doors close <em>automatically (automatic)</em>.
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.


9. It was very <em>simple (simple)</em> question.
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.
</div> 
|Merksatz
}}


6. In the following sentences, fill in the blanks with either an adjective or an adverb.
<div class="lueckentext-quiz" lang="en">
Here`s an example:


0. (beautiful) She sang <span style="font-style:italic; font-weight:bold">beautifully</span>. She`s really got the most <span style="font-style:italic; font-weight:bold">beautiful</span> voice I've ever heard.
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:


1. (slow) He walked into the room very <em>slowly()</em>. Each step was slow, quiet and very, very <em>slow()</em>.
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.


2. (quick) Get dressed as <em>quickly()</em> as possible. If you`re not <em>quick()</em> we`re going to miss the train.
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.
|Merksatz
}}


3. (careful) John is so <em>careful()</em>. It takes him ten minutes to clean his teeth. In fact he does everything <em>carefully()</em>.


4. (nice) She spoke to me very <em>nicely()</em>, but then that`s typical. She`s a very <em>nice()</em> woman.
[[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|150px]]


5. (angry)I had to speak to him <em>angrily()</em>. But it was his own fault. He made me <em>angry()</em>.
Die auf dieser Seite gewonnenen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische Funktionen der Form <math>y=a(x-d)^2+e</math>. Diese Form heißt '''Scheitelpunktform''', da die Parameter d und e die Koordinaten des Scheitelpunktes <math>S(d|e)</math> der Parabel angeben.  


6. (terrible) I'm a <em> terrible()</em> tennis player. I practice a lot but I'm still <em>terribly()</em> bad.
Auf der [[{{BASEPAGENAME}}/Die Scheitelpunktform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[{{BASEPAGENAME}}/Übungen|Übungen]].


7. (correct) She wrote the <em>correct()</em> answers. In fact she did everything <em>correctly()</em>, but I still don`t like her.
{{Fortsetzung|weiter=Die Scheitelpunktform|weiterlink=Quadratische Funktionen erkunden/Die Scheitelpunktform}}
</div>


{{Fortsetzung|
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]])
weiter=Adverb or Adjective?<br>(be, feel, look, smell)|weiterlink=Englisch/Grammatik/Adverb or Adjective - be, feel, look|
übersicht=Adverbs and Adjectives<br>(Übersicht)|übersichtlink=Englisch/Grammatik/Adverbs#Siehe_auch|
vorher=Adverbs of Manner"|vorherlink=Englisch/Grammatik/Adverbs}}


[[Kategorie:Mathematik]]
[[Kategorie:ZUM2Edutags]]
[[Kategorie:Quadratische Funktion]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:Englisch]]
[[Kategorie:LearningApps]]
[[Kategorie:Englisch Grammatik]]
[[Kategorie:GeoGebra]]
{{SORTIERUNG:{{SUBPAGENAME}}}}

Version vom 24. Januar 2019, 16:37 Uhr


In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst

  1. herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,
  2. entdecken, welche Parameter es in der Scheitelpunktform quadratischer Funktionen gibt.

Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.


Quadratische Funktionen verändern

Wenn du dir die Bilder von der Seite Quadratische Funktionen im Alltag noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x2) variiert und es entstehen die unterschiedlichsten Parabeln.


Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.


Vorlage:Video Video: Parabelflug des DLR


Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der Vorlage:Pdf-extern des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16 (31) angucken.


Strecken, Stauchen und Spiegeln

Achtung

Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel die Parameter der Normalform. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt Verschiebung in x-Richtung.


Aufgabe 1

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) Notizblock mit Bleistift.

Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:

(1) ,          (2)      und     (3)  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).

Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von vergleichen.

b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für "" eingeben. Dadurch wird der grüne Graph verändert.

GeoGebra

Richtige Vermutungen können wie folgt lauten:

1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel schmaler, da die quadrierten x-Werte () durch den Vorfaktor 2 immer verdoppelt werden. Der zugehörige y-Wert wird dadurch größer.

2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel breiter, da die quadrierten x-Werte () durch den Vorfaktor 1/2 immer halbiert werden. Der zugehörige y-Wert wird dadurch kleiner.

3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel "umgedreht", da die quadrierten x-Werte () durch den Vorfaktor -1 immer negative Werte annehmen. Der y-Wert ist also immer negativ.


Aufgabe 2

In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.


Schau nochmal in deine Lösung zu Aufgabe 1. Du kannst auch erneut verschiedene Werte für a in dem Applet dort eingeben und die Auswirkungen auf den Graphen betrachten.

Wenn a kleiner Null ist (), dann ist die Parabel nach unten geöffnet.

Wenn a größer Null ist (), dann ist die Parabel nach oben geöffnet.

Wenn a zwischen minus Eins und Eins liegt (), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.

Wenn a kleiner als minus Eins () oder größer als Eins ist (), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.


Aufgabe 3

Knobelaufgabe

Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.


Aufgabe 4

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.
Merke

Multipliziert man mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.

Verschiebung in x-Richtung

Aufgabe 5

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 5) Notizblock mit Bleistift.

Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:

(1)           (2)  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die zwei Funktionen aufstellen und die Funktionswerte mit den Werten von vergleichen.

b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für "" eingeben. Dadurch wird der grüne Graph verändert.

GeoGebra

Richtige Vermutungen können wie folgt lauten:

1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel nach rechts verschoben, da die x-Werte vor dem quadrieren mit 2 subtrahiert werden (). Der Scheitelpunkt liegt nicht mehr bei , sondern weiter rechts im Punkt .

2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel nach links verschoben, da die x-Werte vor dem quadrieren mit 2 addiert werden (). Der Scheitelpunkt liegt nicht mehr bei , sondern weiter links im Punkt .


Aufgabe 6

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) Notizblock mit Bleistift.

Fabians Vermutung darüber, wie sich der Graph einer Funktion verändert, wenn man zu dem x‑Wert etwas addiert oder subtrahiert steht im Widerspruch zu seinen Beobachtungen in dem Applet. Merle versucht diesen vermeintlichen Widerspruch mit Hilfe einer Tabelle zu erklären.

a) Lies dir die Unterhaltung von Fabian und Merle durch und versuche die Begründung nachzuvollziehen.

Gespräch horizontale Verschiebung

b) Erstelle geschickt ohne zu rechnen eine Tabelle für die Funktion .

1. Zeichne eine Tabelle wie sie in Aufgabenteil a) dargestellt ist in deinen Hefter.

2. Füge zunächst nur die x-Werte hinzu, für die du die Tabelle erstellen möchtest - zum Beispiel von -6 bis 2.

3. Wie ist der Term im Vergleich zu verschoben? Schau dir an, mit welchem Trick Merle und Fabian die Tabelle in Aufgabenteil a) erstellt haben.

Die Tabelle für sieht wie folgt aus:

x -6 -5 -4 -3 -2 -1 0 1 2
y 9 4 1 0 1 4 9 16 25


Aufgabe 7

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.
Merke

Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel entlang der x-Achse verschoben. Für gilt:

d > 0: Die Parabel wird entlang der x-Achse nach rechts verschoben.

d < 0: Die Parabel wird entlang der x-Achse nach links verschoben.

Verschiebung in y-Richtung

Aufgabe 8

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) Notizblock mit Bleistift.

Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:

(1)           (2)  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die beiden Funktionen aufstellen und die Funktionswerte mit den Werten von vergleichen.

b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für "" eingeben. Dadurch wird der grüne Graph verändert.

GeoGebra

Richtige Vermutungen können wie folgt lauten:

1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel nach oben verschoben, da die x-Werte nach dem quadrieren mit 3 addiert werden.

2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel nach unten verschoben, da die x-Werte nach dem quadrieren mit 3 subtrahiert werden.


Aufgabe 9

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 7-8) Notizblock mit Bleistift.

Graphen zeichnen einmal „verkehrt herum”: Bei dieser Aufgabe sind die Funktionsgraphen und Terme bereits gezeichnet bzw. angegeben. Was fehlt, sind die passenden Koordinatensysteme.

a) Zeichne in deinem Hefter die passenden Koordinatensysteme für drei der quadratischen Funktionen:

Funktionen für Aufgabe

Der Parameter d kommt bei keiner der Parabeln vor, das heißt der Graph ist weder nach rechts noch nach links verschoben.

Der Parameter a sorgt für eine Stauchung oder Streckung der Parabel. Der Parameter e verschiebt die Parabel in y-Richtung, also entlang der y-Achse nach oben oder unten.

Nutze für die Abstände auf der x- und y-Achse jeweils 1 Kästchen und gehe in Einserschritten voran.

Die Koordinatensysteme zu den Parabeln und Funktionstermen sollten wie folgt liegen: Lösungsteil 1Lösungsteil 2Lösungsteil 3

Für die Lage der Achsen ist wichtig, dass für alle Funktionen hier gilt: .

Daraus folgt, dass der Scheitelpunkt jeder Parabel hier auf der y-Achse liegt. Seine Koordinaten sind also jeweils .

Die x-Achse liegt e Einheiten von dem Scheitelpunkt entfernt. Je nach Vorzeichen von e über oder unter dem Scheitelpunkt.

Der Maßstab der Achsen muss so gewählt sein, dass jedes Kästchen für eine Einheit steht. Sonst passen die Werte der anderen Punkte der Parabeln nicht zu der Funktionsgleichung.

b) Wenn du das Koordinatensystem für die Funktion gezeichnet hast, wie kommst du dann ganz einfach auf das Koordinatensystem der Funktion ? Formuliere einen Tipp.

Ein Tipp könnte wie folgt lauten:

Beispiel Tipp


Aufgabe 10

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 8) Notizblock mit Bleistift.

Lucio hat noch ein Problem bei der Unterscheidung von Termen in der Form und . Lies dir die folgende Unterhaltung durch. Führe sie anschließend in deinem Hefter fort, indem du dir eine Antwort auf Lucios Problem überlegst.

Unterhaltung zu typischem Fehler
Schaue dir noch einmal die Binomischen Formeln an.

Die Terme und sind nicht gleich.

Man darf das Quadrat nicht einfach in die Klammer von ziehen:

Die erste Binomische Formel besagt vielmehr:

.


Aufgabe 11

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.
Merke

Addiert oder subtrahiert man eine Zahl e von , wird die Parabel entlang der y-Achse verschoben. Für gilt:

e > 0: Die Parabel wird entlang der y-Achse nach oben verschoben.

e < 0: Die Parabel wird entlang der y-Achse nach unten verschoben.

Zusammenfassung der wichtigsten Inhalte

Hier sind die Merksätze, die dir auf dieser Seite begegnet sind, noch einmal gesammelt dargestellt.


Merke

Multipliziert man mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Merke

Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel entlang der x-Achse verschoben. Für gilt:

d > 0: Die Parabel wird entlang der x-Achse nach rechts verschoben.

d < 0: Die Parabel wird entlang der x-Achse nach links verschoben.


Merke

Addiert oder subtrahiert man eine Zahl e von , wird die Parabel entlang der y-Achse verschoben. Für gilt:

e > 0: Die Parabel wird entlang der y-Achse nach oben verschoben.

e < 0: Die Parabel wird entlang der y-Achse nach unten verschoben.


Ausblick

Die auf dieser Seite gewonnenen Erkenntnisse können kombiniert werden und ergeben quadratische Funktionen der Form . Diese Form heißt Scheitelpunktform, da die Parameter d und e die Koordinaten des Scheitelpunktes der Parabel angeben.

Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.

Erstellt von: Elena Jedtke (Diskussion)