Quadratische Funktionen erkunden/Die Normalform und Quadratische Funktionen erkunden/Die Parameter der Normalform: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Quadratische Funktionen erkunden(Unterschied zwischen Seiten)
K (- ZUM2Edutags)
Markierung: 2017-Quelltext-Bearbeitung
 
K (- ZUM2Edutags)
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 3: Zeile 3:
{{Box
{{Box
|
|
|In diesem Kapitel wirst du Experte für die '''Normalform''' quadratischer Funktionen. Bisher hast du quadratische Funktionen in der Scheitelpunktform kennengelernt. In Anwendungen wird jedoch häufig diese '''andere Variante''' quadratischer Funktionen genutzt. In diesem Kapitel
|In diesem Kapitel stellen sich die Parameter der Normalform quadratischer Funktionen vor. Du kannst herausfinden,
#lernst du eine Anwendungsbeispiel aus der Fahrschule kennen,
#wie man Parabeln strecken, stauchen und spiegeln kann,
#erfährst, wie Terme quadratischer Funktionen in Normalform aussehen und
#welchen Einfluss die Parameter der Normalform auf das Aussehen und die Lage der Parabel haben und
#du lernst in einem Quiz und einer Partnerarbeit Eigenschaften und Besonderheiten der Normalform näher kennen.
#wie du das an den Funktionstermen erkennen kannst.
|Kurzinfo
|Kurzinfo
}}
}}




==Strecken, Stauchen und Spiegeln==


{{Box
{{Box
|Aufgabe 1
|Achtung
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 12-13) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
|Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel [[{{BASEPAGENAME}}/Die Parameter der Scheitelpunktform|die Parameter der Scheitelpunktform]]. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt [[#Der Parameter b|"Der Parameter b"]].
|Hervorhebung1
}}
 


[[Datei:Anhalteweg.png|rahmenlos|zentriert|500px|Skizze Anhalteweg]]
{{Box
|1=Aufgabe 1
|2='''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


In der [https://www.jungesportal.de/fuehrerschein/faustformeln-fuer-die-theorie.php Fahrschule] lernt man eine [https://de.wikipedia.org/wiki/Faustregel Faustformel] zur Berechnung des '''Bremsweges''' eines Autos kennen. Sie lautet „Geschwindigkeit durch 10 Mal Geschwindigkeit durch 10“ – in Termen ausgedrückt (mit v für Geschwindigkeit):
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=2x^2</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=\frac{1}{2}x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;und&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3) <math>y=-x^2</math> ?


<math> f(v) \approx \frac{v}{10}\cdot\frac{v}{10} </math>.  
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).
{{Lösung versteckt|1=Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.|2=Hilfe anzeigen|3=Hilfe verbergen}}


Für den tatsächlichen Anhalteweg muss jedoch auch noch der '''Reaktionsweg''' des Fahrers beachtet werden. Durch ihn wird ein Weg von annähernd „drei Mal die Geschwindigkeit durch 10“ zurückgelegt und der zugehörige Term lautet:
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


<math> f(v) \approx \frac{3 \cdot v}{10} </math>.


Kombiniert man Bremsweg und Reaktionsweg, so lässt sich näherungsweies der '''Anhalteweg''' eines PKW bestimmen. Die zusammengesetzte Formel lautet:
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a \cdot x^2</math> verändert.
<ggb_applet width="100%" height="500" version="4.2" showMenuBar="true" showResetIcon="true" id="eK5MmMmb" />
 
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor 2 immer verdoppelt werden. Der zugehörige y-Wert wird dadurch größer.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor 1/2 immer halbiert werden. Der zugehörige y-Wert wird dadurch kleiner.
 
3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''"umgedreht"''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor -1 immer negative Werte annehmen. Der y-Wert ist also immer negativ.}}|3=Arbeitsmethode}}
 
 
{{Box
|Aufgabe 2
|In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
 
{{LearningApp|app=pysv88tea18|height=400px}}
{{Lösung versteckt|1=Schau nochmal in deine Lösung zu Aufgabe 1. Du kannst auch erneut verschiedene Werte für a in dem Applet dort eingeben und die Auswirkungen auf den Graphen betrachten.|2=Hilfe anzeigen|3=Hilfe verbergen}}
 
{{Lösung versteckt|Wenn a kleiner Null ist (<math>a<0</math>), dann ist die Parabel nach unten geöffnet.
 
Wenn a größer Null ist (<math>a>0</math>), dann ist die Parabel nach oben geöffnet.
 
Wenn a zwischen minus Eins und Eins liegt (<math>-1<a<1</math>), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.
 
Wenn a kleiner als minus Eins (<math>a<-1</math>) oder größer als Eins ist (<math>a>1</math>), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.}}|Arbeitsmethode
}}
 
 
{{Box
|Aufgabe 3
|'''Knobelaufgabe'''
 
Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.
{{LearningApp|app=pcssvbrfj16|height=500px}}
|Arbeitsmethode
}}
 
 
{{Box|1=Aufgabe 4|2='''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|3=Arbeitsmethode}}
{{Box
|Merke
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}
 
==Der Parameter b==
 
{{Box
|Aufgabe 5
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 10) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
   
   
<math>f(v)\approx\frac{v}{10}\cdot\frac{v}{10}+\frac{3 \cdot v}{10}=\frac{v^2}{100}+\frac{3 \cdot v}{10}</math>.
::(1) <math>y=x^2+3x</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=x^2-3x</math> ?


'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).


'''a)''' Berechne den Anhalteweg für die Geschwindigkeiten: 30&nbsp;km/h, 50&nbsp;km/h und 70&nbsp;km/h und 100&nbsp;km/h. Trage deine Ergebnisse in die Tabelle in deinem Hefter ein.  
{{Lösung versteckt|1=Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.|2=Hilfe anzeigen|3= Hilfe verbergen}}


Zur Kontrolle kannst du das folgende Applet benutzen:
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


{{LearningApp|app=ppixrfhoj17|width=100%|height=250px}}
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für <math>b=</math> eingeben. Dadurch wird der grüne Graph <math>g(x)=x^2+b \cdot x</math> verändert.


<ggb_applet width="100%" height="571" version="4.2" showMenuBar="true" showResetIcon="true" id="MyuG9D2b" />
{{Lösung versteckt|1=Richtige Vermutungen können wie folgt lauten:


{{Lösung versteckt|1=Der Anhalteweg wird durch einsetzen der Geschwindigkeiten v in die obige Formel berechnet. Es ergeben sich:
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach links und unten verschoben''', da zu dem quadrierten x-Wert (<math>x^2</math>) ein weiterer Term mit x '''addiert''' wird.
<math>f(30)\approx\frac{30}{10}\cdot\frac{30}{10}+\frac{3 \cdot 30}{10}=\frac{30^2}{100}+\frac{3 \cdot 30}{10}=18</math>,


<math>f(50)\approx\frac{50^2}{100}+\frac{3 \cdot 50}{10}=40</math>,
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach rechts und unten verschoben''', da ein Term mit x von dem quadrierten x-Wert (<math>x^2</math>) '''subtrahiert''' wird.


<math>f(70)\approx\frac{70^2}{100}+\frac{3 \cdot 70}{10}=70</math> und
Der Parameter <math>a</math> ist in beiden Fällen positiv mit <math>a=1</math>.|2=Lösung anzeigen|3=Lösung verbergen}}
|Arbeitsmethode
}}


<math>f(100)\approx\frac{100^2}{100}+\frac{3 \cdot 100}{10}=130</math>.
|2=Lösung anzeigen
|3=Lösung verbergen}}


'''b)''' Zeichne den zugehörigen Graphen in deinen Hefter und beschreibe seinen Verlauf in wenigen Sätzen.
{{Box
|Aufgabe 6
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11-12) und einen Partner''' [[Datei:Notepad-117597.svg|32x32px]][[Datei:Puzzle-1020221_640.jpg|rahmenlos|80x80px]].


{{Lösung versteckt|1=Der Anhalteweg ist ''abhängig'' von der Geschwindigkeit. Trage deshalb die Geschwindigkeiten auf der x-Achse und die Anhaltewege auf der y-Achse deines Koordinatensystems ein.|2=Hilfe anzeigen|3=Hilfe verstecken}}
'''a)'''
{{LearningApp|app=pyf382e7a17|width=100%|height=500px}}
{{Lösung versteckt|1=Wie sieht der Graph aus: Ist er nach oben oder nach unten geöffnet? Nach rechts oder nach links verschoben?


{{Lösung versteckt|1=[[Datei:Anhalteweg Graph.PNG|rahmenlos|500px|Anhalteweg eines PKW]]
Wende dein Wissen über die Parameter <math>a</math> und <math>b</math> an.|2= Hilfe anzeigen|3=Hilfe verstecken}}


'''b)''' Überlege dir einen Tipp für deinen Partner, wie er die passenden Terme beim Pferderennen herausfinden kann. Notiere den Tipp in deinem Hefter.


Eine mögliche Beschreibung ist:
'''c)''' Vergleiche deinen Tipp mit dem deines Partners an dich.


Der Graph zeigt nur die positiven Werte der (quadratischen) Funktion für den Anhalteweg, da der Kontext keine sinnvolle Beschreibung negativer Werte erlaubt. Der Anhalteweg verlängert sich deutlich mit zunehmender Geschwindigkeit, das heißt der Graph steigt rasch an, was charakteristisch für quadratische Funktionen mit positivem Paramter <math>a</math> (hier <math>a=1</math>) ist.|2=Lösung anzeigen|3=Lösung verstecken}}
{{Lösung versteckt|1=[[Datei:Beispiel-Tipp Pferderennen.PNG|rahmenlos|600px|Parameter b]]|2=Beispiel Tipp anzeigen|3=Beispiel Tipp  verbergen}}
|Arbeitsmethode
|Arbeitsmethode
}}
}}




{{Box|1=Aufgabe 7|2='''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 4) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|3=Arbeitsmethode}}
{{Box
{{Box
|Aufgabe 2
|Merke
|'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 5)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
|Addiert man den Ausdruck <math>bx</math> zu <math>y=ax^2</math>, wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für <math>y=ax^2+bx</math> gilt:
 
<u>Für '''a>0:'''</u>
 
'''b>0''': Die Parabel wird nach links und unten verschoben.
 
'''b<0''': Die Parabel wird nach rechts und unten verschoben.
 
<u>Für '''a<0:'''</u>
 
'''b>0''': Die Parabel wird nach rechts und oben verschoben.
 
'''b<0''': Die Parabel wird nach links und oben verschoben.
|Merksatz
}}
 
 
==Der Parameter c==
 
{{Box
|Aufgabe 8
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=x^2+3x+2</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=x^2+3x-2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
 
{{Lösung versteckt|1=Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.|2= Hilfe anzeigen|3=Hilfe verstecken}}
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für <math>c=</math> eingeben. Dadurch wird der grüne Graph <math>g(x)=x^2+3 \cdot x+c</math> verändert.
 
<ggb_applet width="100%" height="571" version="4.2" showMenuBar="true" showResetIcon="true" id="uV5keF5j" />
{{Lösung versteckt|1=Richtige Vermutungen können wie folgt lauten:
 
Durch Aufgabe 5 ist klar, dass die Parabel von Funktion (1) nach links und unten verschoben ist (siehe oben, Parameter b).


'''a)''' Lies dir den folgenden Merksatz aufmerksam durch.
1. Die Parabel von Funktion (1) ist zusätzlich wieder '''nach oben verschoben''', da noch ein weiterer Term '''addiert''' wird (<math>c=2</math>).  


'''b)''' Als Beispiel ist bei dem Merksatz im Hefter der Funktionsterm <math>y=-x^2+2x+3</math> einer quadratischen Funktion in Normalform gegeben. Skizziere den zugehörigen Graphen in das Koordinatensystem.
2. Die Parabel von Funktion (2) ist zusätzlich '''nach unten verschoben''', da noch ein weiterer Term '''subtrahiert''' wird (<math>c=-2</math>).
{{Lösung versteckt|1=Denke noch mal daran, was die Parameter <math>a, b</math> und <math>c</math> einzeln für eine Auswirkung auf die Lage des Graphen einer Funktion haben. Notiere deine Überlegungen. Kombiniert ergeben sie die Lage des Graphen der Funktion in Normalform.|2=Hilfe anzeigen|3=Hilfe verbergen}}
{{Lösung versteckt|1=[[Datei:NF Aufg2-Lösung.png|rahmenlos|300px|Lernpfade QF erkunden/erforschen, Kapitel NF]]


Der Wert von c gibt immer den '''y-Achsenabschnitt''' an.|2=Lösung anzeigen|3=Lösung verbergen}}
|Arbeitsmethode
}}


Der Parameter <math>a=-1</math> ist kleiner als Null, weshalb die Parabel nach unten geöffnet ist. Da der Parameter genau den Wert <math>-1</math> annimmt, hat die Parabel die Form einer umgedrehten Normalparabel.


Der Parameter <math>b=2</math> ist positiv und der Parameter <math>a</math> negativ, weshalb die Parabel nach rechts und oben verschoben wird.
{{Box
|Aufgabe 9
|'''Welchen Wert hat der Parameter c?''' Trage deine Lösung wie in dem '''Beispiel''' ein:


Der Parameter <math>c=3</math> gibt den y-Achsenabschnitt an.|2=Lösung anzeigen|3=Lösung verbergen}}  
::[[Datei:Beispiel Parameter c.PNG|rahmenlos|150px|Beispiel]]
{{LearningApp|app=p8zh59fa317|width=100%|height=700px}}
{{Lösung versteckt|1=Der Paramter <math>c</math> gibt den y-Achsenabschnitt an. Du kannst ihn an dem Punkt <math>P(0|c)</math> ablesen.|2=Hilfe anzeigen|3=Hilfe verbergen}}
|Arbeitsmethode
|Arbeitsmethode
}}
}}
{{Box|1=Aufgabe 10|2='''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 4) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|3=Arbeitsmethode}}
{{Box
{{Box
|Merke
|Merke
|Terme quadratischer Funktionen können in der Form '''<math>f(x)=ax^2+bx+c</math>''' (mit <math>a\neq0</math>) beschrieben werden. Diese Darstellungsform nennt man '''Normalform'''. In der Normalform quadratischer Funktionen kann der '''y-Achsenabschnitt <math>c</math>''' direkt abgelesen werden.
|Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den '''y-Achsenabschnitt''' der Parabel <math>y=ax^2+bx+c</math> an. Es gilt für:
 
'''c>0''': Die Parabel wird nach oben verschoben.
 
'''c<0''': Die Parabel wird nach unten verschoben.
|Merksatz
|Merksatz
}}
}}


==Zusammenfassung der wichtigsten Inhalte==


{{Box
{{Box
|Aufgabe 3
|
|Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Tabelle) quadratischer Funktionen.
|Hier sind die Merksätze, die dir auf dieser Seite begegnet sind, noch einmal gesammelt dargestellt.
|Kurzinfo
}}
 


'''a)''' Löse das folgende Quiz, indem du immer zwei Karten zu einem Paar zusammenfügst.  
{{Box
|Merke
|
Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:


{{LearningApp|app=ps554x1ba17|width=100%|height=500px}}
'''a > 0''': Die Parabel ist nach oben geöffnet.


'''b)''' Du hattest noch ein paar Schwierigkeiten bei der Zuordnung? Schau dir die folgenden Tipps an und versuche es erneut!
'''a < 0''': Die Parabel ist nach unten geöffnet.
{{Lösung versteckt|1=Du kannst...


...den '''y-Achsenabschnitt''' an den Funktionsgraphen ablesen. Passt er zu einem der Funktionsterme? Oder findest du ihn in einer der Tabellen wieder?
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.


...'''einen beliebigen Punkt''' an den Graphen ablesen. Setze die Koordinaten in einen der Funktionsterme ein oder vergleiche sie mit den Werten in einer der Tabellen.
'''-1 < a < 1''': Die Parabel ist gestaucht.


...auf der [[{{BASEPAGENAME}}/Die Parameter der Scheitelpunktform|Parameterseite]] nachschauen wofür die Paramter in der Normalform stehen. Was ist nochmal der''' y-Achsenabschnitt''', was der '''Streckungsfaktor'''?
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
{{Lösung versteckt|1=Der y-Achsenabschnitt hat die Koordinaten <math>P(0|c)</math>. In Tabellen findest du ihn deshalb als y-Wert zu <math>x=0</math>. In Termen steht er als Paramter <math>c</math>, z. B. mit <math>c=3</math> in <math>y=x^2+2x+3</math>.|2=Weitere Hilfe anzeigen|3=Weitere Hilfe verbergen}}|2=Hilfe anzeigen|3=Hilfe verbergen}}
|Merksatz
|Arbeitsmethode
}}
}}




{{Box
{{Box
|Aufgabe 4
|Merke
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 14) und einen Partner''' [[Datei:Notepad-117597.svg|32x32px]][[Datei:Puzzle-1020221_640.jpg|rahmenlos|80x80px]].
|Addiert man den Ausdruck <math>bx</math> zu <math>y=ax^2</math>, wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für <math>y=ax^2+bx</math> gilt:
 
<u>Für '''a>0:'''</u>
 
'''b>0''': Die Parabel wird nach links und unten verschoben.


'''a)''' Finde Werte für a, b und c, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter.
'''b<0''': Die Parabel wird nach rechts und unten verschoben.


<ggb_applet id="YE3FKZgC" width="895" height="610" border="888888" />
<u>Für '''a<0:'''</u>


{{Lösung versteckt|1=Überlege dir, welche Auswirkungen die einzelnen [[{{BASEPAGENAME}}/Die Parameter der Scheitelpunktform|Parameter]]  auf die Lage der Parabel haben.
'''b>0''': Die Parabel wird nach rechts und oben verschoben.


* Ist die Parabel auf dem Bild nach oben oder nach unten geöffnet? Ist sie gestreckt oder gestaucht? Stell den Parameter a dementsprechend ein.
'''b<0''': Die Parabel wird nach links und oben verschoben.
|Merksatz
}}


* In welchem [https://de.wikipedia.org/wiki/Quadrant Quadranten] liegt die Parabel? Muss b positiv oder negativ sein?


* Kannst du einen y-Achsenabschnitt sehen? Stell den Parameter c dementsprechend ein.
{{Box
|Merke
|Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den '''y-Achsenabschnitt''' der Parabel <math>y=ax^2+bx+c</math> an. Es gilt für:


* Kannst du den y-Achsenabschnitt nicht erkennen? Stell die Paramter a und b so ein, dass die Parabel genau über oder unter der Parabel auf dem Foto ist. Danach kannst du sie mit dem Parameter c in die richtige Höhe verschieben.|2=Hilfe anzeigen|3=Hilfe verbergen}}
'''c>0''': Die Parabel wird nach oben verschoben.
{{Lösung versteckt|1=Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.
{{{!}} class="wikitable"
{{!}}-
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter b !! Parameter c
{{!}}-
{{!}}  Angry Birds {{!}}{{!}} <math>f(x)=-0.13x^2+1.82x-1.52</math> {{!}}{{!}} -0.14 ≤ a ≤ -0.13 {{!}}{{!}} 1.82 ≤ b ≤ 1.95 {{!}}{{!}} -1.85 ≤ c ≤ -1.52
{{!}}-
{{!}} Golden Gate Bridge {{!}}{{!}} <math>f(x)=0.04x^2-0.46x+2.30</math> {{!}}{{!}} 0.03 ≤ a ≤ 0.05 {{!}}{{!}} -0.40 ≤ b ≤ -0.50 {{!}}{{!}} 2.05 ≤ c ≤ 2.30
{{!}}-
{{!}} Springbrunnen {{!}}{{!}} <math>f(x)=-0.33x^2+3.20x-2.46</math> {{!}}{{!}} -0.40 ≤ a ≤ -0.30 {{!}}{{!}} 3.15 ≤ b ≤ 3.35 {{!}}{{!}} -2.95 ≤ c ≤ -2.45
{{!}}-
{{!}}  Elbphilharmonie (Bogen links){{!}}{{!}} <math>f(x)=0.40x^2-2.00x+6.85</math> {{!}}{{!}} 0.33 ≤ a ≤ 0.47 {{!}}{{!}} 1.80 ≤ b ≤ 2.00 {{!}}{{!}} 6.35 ≤ c ≤ 6.85
{{!}}-
{{!}} Elbphilharmonie (Bogen mitte){{!}}{{!}} <math>f(x)=0.33x^2-3.86x+14.69</math> {{!}}{{!}} 0.30 ≤ a ≤ 0.36 {{!}}{{!}} -4.10 ≤ b ≤ -3.60 {{!}}{{!}} 13.65 ≤ c ≤ 14.95
{{!}}-
{{!}}  Elbphilharmonie (Bogen rechts){{!}}{{!}} <math>f(x)=0.22x^2-4.14x+23.04</math> {{!}}{{!}} 0.18 ≤ a ≤ 0.27 {{!}}{{!}} -3.40 ≤ b ≤ -5.05 {{!}}{{!}} 19.70 ≤ c ≤ 27.20
{{!}}-
{{!}}  Gebirgsformation {{!}}{{!}} <math>f(x)=-0.2x^2+2.16x-3.53</math> {{!}}{{!}} -0.30 ≤ a ≤ -0.15 {{!}}{{!}} 1.55 ≤ b ≤ 3.30 {{!}}{{!}} -6.35 ≤ c ≤ -1.70
{{!}}-
{{!}} Motorrad-Stunt {{!}}{{!}} <math>f(x)=-0.07x^2+1.08x+1.79</math> {{!}}{{!}} -0.10 ≤ a ≤ -0.04 {{!}}{{!}} 0.85 ≤ b ≤ 1.30 {{!}}{{!}} 0.95 ≤ c ≤ 1.79
{{!}}-
{{!}} Basketball {{!}}{{!}} <math>f(x)=-0.32x^2+4.16x-7.07</math> {{!}}{{!}} -0.35 ≤ a ≤ -0.29 {{!}}{{!}} 3.80 ≤ b ≤ 4.40 {{!}}{{!}} -7.40 ≤ c ≤ -6.10
{{!}}}
|2=Lösungsvorschläge anzeigen|3=Lösungsvorschläge verbergen}}
'''b)''' Vielleicht ist dir aufgefallen, dass diese Aufgabe so ähnlich in dem Kapitel [[{{BASEPAGENAME}}/Die Scheitelpunktform|Scheitelpunktform]] auftaucht (S. 9). Vergleiche deine Ergebnisse aus beiden Aufgaben. Wo siehst du Parallelen und was ist anders? Notiere deine Überlegungen.


'''c)''' Vergleiche deine Erkenntnisse aus Aufgabe b) mit den Ergebnissen deines Partners. Fasst eure Erkenntnisse gemeinsam in wenigen Sätzen zusammen.
'''c<0''': Die Parabel wird nach unten verschoben.
{{Lösung versteckt|Es ist möglich, die gleiche Parabel mit einem Term in der Normalform und einem Term in der Scheitelpunktform quadratischer Funktionen zu beschreiben. Der Parameter a bleibt dabei in beiden Darstellungsformen gleich. Die Parameter b, c, d und e sind unterschiedlich.|Mögliche Beobachtungen anzeigen|Mögliche Beobachtungen verbergen}}
|Merksatz
|Arbeitsmethode
}}
}}




{{Fortsetzung|weiter=Von der Scheitelpunkt- zur Normalform|weiterlink=Quadratische Funktionen erkunden/Von der Scheitelpunkt- zur Normalform}}
[[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|100px]]
 
Die auf dieser Seite gewonnen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische Funktion der Form <math>y=ax^2+bx+c</math>. Diese Form heißt '''Normalform'''.
 
Auf der [[{{BASEPAGENAME}}/Die Normalform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[{{BASEPAGENAME}}/Übungen|Übungen]].
 
{{Fortsetzung|weiter=Die Normalform|weiterlink=Quadratische Funktionen erkunden/Die Normalform}}





Version vom 17. Dezember 2021, 11:34 Uhr


In diesem Kapitel stellen sich die Parameter der Normalform quadratischer Funktionen vor. Du kannst herausfinden,

  1. wie man Parabeln strecken, stauchen und spiegeln kann,
  2. welchen Einfluss die Parameter der Normalform auf das Aussehen und die Lage der Parabel haben und
  3. wie du das an den Funktionstermen erkennen kannst.


Strecken, Stauchen und Spiegeln

Achtung

Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel die Parameter der Scheitelpunktform. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt "Der Parameter b".


Aufgabe 1

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) Notizblock mit Bleistift.

Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:

(1) ,          (2)      und     (3)  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).

Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von vergleichen.

b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für "" eingeben. Dadurch wird der grüne Graph verändert.

GeoGebra

Richtige Vermutungen können wie folgt lauten:

1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel schmaler, da die quadrierten x-Werte () durch den Vorfaktor 2 immer verdoppelt werden. Der zugehörige y-Wert wird dadurch größer.

2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel breiter, da die quadrierten x-Werte () durch den Vorfaktor 1/2 immer halbiert werden. Der zugehörige y-Wert wird dadurch kleiner.

3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel "umgedreht", da die quadrierten x-Werte () durch den Vorfaktor -1 immer negative Werte annehmen. Der y-Wert ist also immer negativ.


Aufgabe 2

In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.


Schau nochmal in deine Lösung zu Aufgabe 1. Du kannst auch erneut verschiedene Werte für a in dem Applet dort eingeben und die Auswirkungen auf den Graphen betrachten.

Wenn a kleiner Null ist (), dann ist die Parabel nach unten geöffnet.

Wenn a größer Null ist (), dann ist die Parabel nach oben geöffnet.

Wenn a zwischen minus Eins und Eins liegt (), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.

Wenn a kleiner als minus Eins () oder größer als Eins ist (), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.


Aufgabe 3

Knobelaufgabe

Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.


Aufgabe 4

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.
Merke

Multipliziert man mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.

Der Parameter b

Aufgabe 5

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 10) Notizblock mit Bleistift.

Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:

(1) ,          (2)  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von vergleichen.

b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?

In dem Applet ist die Normalparabel grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für eingeben. Dadurch wird der grüne Graph verändert.

GeoGebra

Richtige Vermutungen können wie folgt lauten:

1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel nach links und unten verschoben, da zu dem quadrierten x-Wert () ein weiterer Term mit x addiert wird.

2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel nach rechts und unten verschoben, da ein Term mit x von dem quadrierten x-Wert () subtrahiert wird.

Der Parameter ist in beiden Fällen positiv mit .


Aufgabe 6

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11-12) und einen Partner Notepad-117597.svgPuzzle-1020221 640.jpg.

a)

Wie sieht der Graph aus: Ist er nach oben oder nach unten geöffnet? Nach rechts oder nach links verschoben?

Wende dein Wissen über die Parameter und an.

b) Überlege dir einen Tipp für deinen Partner, wie er die passenden Terme beim Pferderennen herausfinden kann. Notiere den Tipp in deinem Hefter.

c) Vergleiche deinen Tipp mit dem deines Partners an dich.

Parameter b


Aufgabe 7

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 4) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.
Merke

Addiert man den Ausdruck zu , wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für gilt:

Für a>0:

b>0: Die Parabel wird nach links und unten verschoben.

b<0: Die Parabel wird nach rechts und unten verschoben.

Für a<0:

b>0: Die Parabel wird nach rechts und oben verschoben.

b<0: Die Parabel wird nach links und oben verschoben.


Der Parameter c

Aufgabe 8

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11) Notizblock mit Bleistift.

Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:

(1) ,          (2)  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von vergleichen.

b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?

In dem Applet ist die Normalparabel grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für eingeben. Dadurch wird der grüne Graph verändert.

GeoGebra

Richtige Vermutungen können wie folgt lauten:

Durch Aufgabe 5 ist klar, dass die Parabel von Funktion (1) nach links und unten verschoben ist (siehe oben, Parameter b).

1. Die Parabel von Funktion (1) ist zusätzlich wieder nach oben verschoben, da noch ein weiterer Term addiert wird ().

2. Die Parabel von Funktion (2) ist zusätzlich nach unten verschoben, da noch ein weiterer Term subtrahiert wird ().

Der Wert von c gibt immer den y-Achsenabschnitt an.


Aufgabe 9

Welchen Wert hat der Parameter c? Trage deine Lösung wie in dem Beispiel ein:

Beispiel

Der Paramter gibt den y-Achsenabschnitt an. Du kannst ihn an dem Punkt ablesen.


Aufgabe 10

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 4) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.
Merke

Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel an. Es gilt für:

c>0: Die Parabel wird nach oben verschoben.

c<0: Die Parabel wird nach unten verschoben.


Zusammenfassung der wichtigsten Inhalte

Hier sind die Merksätze, die dir auf dieser Seite begegnet sind, noch einmal gesammelt dargestellt.


Merke

Multipliziert man mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Merke

Addiert man den Ausdruck zu , wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für gilt:

Für a>0:

b>0: Die Parabel wird nach links und unten verschoben.

b<0: Die Parabel wird nach rechts und unten verschoben.

Für a<0:

b>0: Die Parabel wird nach rechts und oben verschoben.

b<0: Die Parabel wird nach links und oben verschoben.


Merke

Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel an. Es gilt für:

c>0: Die Parabel wird nach oben verschoben.

c<0: Die Parabel wird nach unten verschoben.


Ausblick

Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form . Diese Form heißt Normalform.

Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.


Erstellt von: Elena Jedtke (Diskussion)